Marcia.Correia

Marcia Correia
Post-doc Researcher
Collaborator
Research Group
Structural Molecular Biology
Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516 Caparica, Portugal
212 948 300
- ext 10962
Research Interests
Nitric oxide synthase (NOS) is the eukaryotic enzyme responsible for the catalytic oxidation of L-arginine to L-citrulline and nitric oxide (NO), which is a signaling mammalian mediator in several physiological processes. The enzyme presents two Ca+2-dependent constitutive isoforms (neuronal NOS, nNOS; endothelial NOS, eNOS) and a Ca+2-independent inducible isoform (iNOS, inducible NOS). Changes in the NOS-mediated production of NO, mainly overproduction, are associated with several pathological states. The crystal structures of the oxygenase domain for all three NOS isozymes have been described providing the grounds for structure-based inhibitor design, and the introduction of potent isozyme selective inhibitors for the treatment of diseases linked to NO overproduction.

Molybdoenzymes are involved in a large number of enzymatic reactions in the nitrogen, carbon and sulfur cycles. Aldehyde oxidases are present in different species, and can be found in many tissues. In humans, AO is abundantly expressed in the liver, with a major role in drug clearance, similar to CYP450. AO is able to perform different oxidative and reductive transformations, namely heterocyclic oxidations. In recent years, exhaustive work has been done regarding its biochemical characterization with identification of numerous inhibitors and substrates of the enzyme, which has given rise to pharmacological interest on the protein. Xanthine oxidases are also present in several organisms and, in humans, XO is mainly involved in the metabolism of purines. Gout and xanthinuria are the most common pathologies in which this enzyme is involved.
Main publications
Otrelo-Cardoso, A. R., Nair, R. R., Correia, M. A. S., Rivas, M. G., & Santos-Silva, T. (2014). TupA: a tungstate binding protein in the periplasm of Desulfovibrio alaskensis G20. International Journal of Molecular Sciences, 15(7), 11783–98. doi:10.3390/ijms150711783

Otrelo-Cardoso, A. R., Correia, M. A. S., Schwuchow, V., Svergun, D. I., Romão, M. J., Leimkühler, S., & Santos-Silva, T. (2014). Structural data on the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli: SAXS and preliminary X-ray crystallography analysis. International Journal of Molecular Sciences, 15(2), 2223–36. doi:10.3390/ijms15022223

Brás J.L, Correia M.A., Romão M.J., Prates J.A., Fontes C.M., Najmudin S. (2011) “Purification, crystallization and preliminary X-ray characterization of the pentamodular arabinoxylanase CtXyl5A from Clostridium thermocellum” Acta Crystallographica Section F Struct. Biol. Cryst. Commun., 67(Pt 7), 833-6

Correia M. A. S., Mazumder K., Brás, J.L., Firbank S.J., Zhu Y., Lewis R.J., York W.S., Fontes C.M., Gilbert H.J. (2011) "The structure and function of an arabinoxylan-specific xylanase” J. Biol. Chem. 286(25), 22510-20.

Correia M. A. S., Montanier C., Flint J.E., Zhu Y., Baslé, A., McKee L.S., Prates J.A., Polizzi S.J., Coutinho P.M., Lewis R.J., Henrissat B., Fontes C.M., Gilbert H.J. (2011) A novel non-catalytic carbohydrate-binding modules displays specificity for galactose-containing polysaccharides through calcium-mediated oligomerization. J. Biol. Chem. 286(25), 22499-509

Brás J., Cartmell A., Carvalho A.L., Verzé G., Bayer E., Vazana Y., Correia M.A.S., Prates J.M., Ratnaparkhe S., Boraston A., Romao M.J., Fontes C.M.G.A., Gilbert H.J. (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. PNAS, 108(13), 5237-42

Correia M.A., Abbott D.W., Gloster T.M., Fernandes V.O., Prates J.A., Montanier C., Dumon C., Williamson M.P., Tunnicliffe R.B., Liu Z., Flint J.E., Davies G.J., Henrissat B., Coutinho P.M., Fontes C.M., Gilbert H.J.(2010) Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module. Biochemistry, 49(29), 6193-205.

Montanier C., Bueren A. L. v., Dumon C., Flint J. E., Correia M. A., Prates J. A., Firbank S. J., Lewis R. J., Grondin G. G., Ghinet M. G., Gloster T. M., Cecile Hervef, Knox J. P., Talbot B. G., Turkenburg, J. P., Kerovuo J., Brzezinski R., Fontes C. M. G. A., Davies G. J., Boraston A. B. and Gilbert H. J. (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. PNAS, 106 (9), 3065–3070

Correia, M. A. S., Pires, V. M. R., Gilbert, H. J., Bolam, D. N., Prates, J. A. M., Alves, V. D., Ferreira, L. M. A. and Fontes, C. M. G. A. (2009) Family 6 carbohydrate-binding modules display multiple -1,3-linked glucan specific binding interfaces. FEMS Microbiol Lett, 300(1), 48-57

Correia M. A. S., Prates J. A. M., Brás J., Fontes C. M. G. A., Newman J. A., Lewis R. J., Gilbert H. J. and Flint J. E. (2008) Crystal Structure of a Cellulosomal Family 3 Carbohydrate Esterase from Clostridium thermocellum Provides Insights into the Mechanism of Substrate Recognition. Journal of Molecular Biology. 379, 64-72

Najmudin S., Guerreiro C.I., Carvalho A.L., Prates J.A., Correia M.A., Alves V.D., Ferreira L.M., Romão M.J., Gilbert H.J., Bolam D.N., Fontes C.M. (2006) Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J. Biol. Chem. 281(13):8815-28.